Noise in Analog
Communication



Random Process



A random process X(t) 1s defined as an ensemble of time functions together with a
probability rule that assigns a probability to any meaningful event associated with an
observation of one of the sample functions of the random process.

Consider the following experiment: An oscillator produces a waveform of the form
A cos(wpt + 8); where 0 is a discrete R.V with a probability mass function

P(8 = 0) = 0.2 P(fi‘: g)zo.z

P(6 =) = 0.3 P(9=3§) - 03

Here the sample space of the experiment consists of four time functions:

x,(t) = A, cos(w,,t ) P(x,(t)) =0.2

x,(t) = A, cos (wm t+ g) P(x,(t)) =0.2
X3(t) = A,,, cos(w,,t + 1) P(x53(t)) =03
x4(t) = Ay cOS(Wint +1) P(x,(t)) = 0.3

4 x1(t) x2(t) )

x3(t) x4(t)
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x1(t) = A cos(2mf ,t) x; (t) = —Asin(2wf ,t)
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Each realization of the experiment is called a sample function x(t). The sample space
(ensemble) composed of functions 1s called a random or stochastic process denoted

by X(t). The value assumed by a random process at a particular time 1s a random variable
with a certain probability density function.



Pmf of x

For the example above, X(0) assumes three values 0.5
P{X(0)=A4,,}=0.2
P{X(0)=-4,,}=03 0.3
P{X(0)=0}=024+03=05 0.2
(Corresponding to = g, 2—”)
-A, 0 +A4,

Pmfof X att=0.

P(X =0)=0.2+0.3=0.5
P(X =+4,,) =02
P(x = -4, ) =023

The mean value of the random variable X 1s

E(X)=—-A4,X034+0%x05+02xA,,
E(X) = —0.34,, + 0.24,, = —0.14,,

Ry



Pmfof X at w, t, = /4

Possible values:

X(Win t=3)
A ms(f+ n) = +A, /N2
Agcos( 47 ) = —A,,/VZ
Agcos(Z+m)=—4,/2

Amcns(g+1—ﬁ) = +Amfﬁ

Prob.

0.2

0.2

0.3

0.3



The Pmfot X atw, t = E 1s sketched here.

Pmf of x
0.5 0.5
_ﬂmi""'@ Amf\E X g

E{X(wmr=§) =0

= Process 1s not stationary [mean at ¢ = 0 1s not the same as the mean at

13
Wmt=T]



In general, X(t) = A,,cos(w,, t+80)

E(X(9)} = ) X(t,6) P(6 = 6)
= A, cosw,, t X 0.2+ 0.2 XAmccas(wm t +g) + 0.3 cos(w,,, t +m) +

0.3 x A cos(wy, t+ ETE)
Mean 1s not a constant (function of time).

= Process is non stationary.



Stationarity of a random process:

The mean of a process X (t) is defined as the expectation of the r.v obtained by observing
the process at some time t as

() = E(X(0)} = f x f(x)dx

f..(x) is the first order pdf of the process X(t).



The autocorrelation function of the process X(t) is defined as the expectation of the
product of two r.v X(t,) and X(t,) obtained by observing the process X(t) at times t,
and t,.

Ry (t1,t5) = E{X(t)X(t2)} = [f %1 % f (X1, x2)dxs dx,

f (x4, x2 ) 1s the second order (joint pdf) of x; and x5.

A random process is said to be wide sense stationary or (stationary) when the following

two conditions hold:

1) E{X(t)} = p, = constant for all £

2) Ry(ty,t;) = E{X(t)X(t2)} = Ry(t; — t4)
1.e., R, is a function of the time difference and not on the absolute values of

t; and t,. 1.e.,

R,(v) =E{X(t)X(t+1)}; wheret=t, — t;



Properties of the autocorrelation function of a stationary process:

1) Rx(0) = E{X?(t)}; the mean square value (second moment of x) {
total power in X(t) }

2) R,(tr) =R,(—71);R,(1) is an even function of T.

3) R,(t)attains its maximum value att = 0

IRx(1)| = Rx(0)



Decorrelation Time : The decorrelation time t, of the a stationary process X(t) of zero
mean is taken as the time taken for the magnitude of the autocorrelation function R, (1) to

decrease say 1% of its maximum value R,.(0).

A Result we Recall from ENEE 331: If 0 is a r.v with pdf f,(0) and Y = g(0) , then
E{Y} = [ g(6)f(0) db

E(g(0)} = f g(0)fo(6) do



Example: A sinusoidal signal with random phase
Let X(t) = A cos(2rf.t + )

A, f. are constants, @ is a continuous r.v uniformly distributed over (—m, )

1
f9(9)={ﬂ —i'l'*‘-':g{?l'
0 o.wW

The mean value of X(t) is

T

1
E(X©)= | Acos@nft+6) - 5-do =0
" 9@ 1)

Which is a constant (independent of time). The autocorrelation function 1s:

R, (1) = E{X(O)X(t + 1)}

9(6) £(0)
= " Acos(2nf, t +6) - Acos[2nf.(t + ) + 6] - 1/27 d8

2 F[s
== [" “{cos2nf. T+ cos(2m(2)f.t + 2nf.T + 26)} d6



We can ecasily recognize that the second integral i1s zero, leaving only the first term.
Hence, R,.(7) becomes

2

Cos2mf-T A
: —-2m = ?EGSZTEfET

2

AZ
R, (1) =2
Note that:

e The mean value is a constant and R,(7) is a function of T. These are the two
conditions necessary for the process to be stationary. So X(t) 1s a stationary
process.

e The process X(t) is periodic with period T =fi .The autocorrelation function

2
R, (1) = A? cos 2n f.t is also periodic with period T, = fi



Ergodic processes:

Given a sample function x(t) of a random process X (t), we define the following
two time averages:

(X(0) = limp,,,— [ x(t)dt

XOX(t+ D) = limp— [ x()x(t + 7)dt

Here, 2T 1s an observation interval.

Def: A random process i1s said to be ergodic if statistical properties can be
determined from a sample function representing one realization of the process.

Statistical average = Time Average.

The two quantities of interest are the mean value and the autocorrelation function.
For an ergodic process, they can be computed using time average as:

E{X(t)} = (x(t)) = constant.

R.(7) = E{X(&)X(t + 1)} = (x(t) x(t + 7)) — function of 7.



Remark: An ergodic process in stationary, but a stationary process is not
necessarily ergodic.

Example: consider again the process X(t) = Acos(2nf. t + 8), 0 is uniformly
distributed over (-t < 0 < m).

The two time averages are calculated as follows:

(x(t)) = = [ Acos(2nfo t + 6)dt = 0 ; T = 1/f;
T

1 c

{(x(Dx(t+1)) = 'ITJ. Acos(2rf.t + 6) - Acos(2mf,t + 2nf. T + @)dt
‘0
= gfnrﬂcos(Zch t + 2nf.t + 260) + cos2nf.t dt

}1.2
= COS2T [, T

These are the same values found in the previous example.
=  process 1s ereodic.



Power spectral Density and Autocorrelation Function:

Consider a stationary random process X (t) that is ergodic. Consider a truncated

segment of x(t) defined over the observation interval -T <t < T. Let X,p be
the truncated signal:

Xor(t) = {x@[‘}) —T< t;:

The Fourier transform of x, 1s:
T

XETU) - f X(t)E-jzﬂftdi_
-T
The energy spectral density of X,1(t) is |X,7(f)|?. Since x(t),y is only one
realization of a random process, then we need to find its mean value
E{|X,r(f)|?}. Dividing this by the observation interval 2T, and letting T becomes
very large, we get the power spectral density of the whole process, averaged over

all sample functions and over all time.

The power spectral density, of a stationary process, may then be defined as:



1
— 1z 2
Sx(f) = lim — E{[Xar ()17}
The Wiener —-Khintchine Thorem:

The power spectral density Sy (f) and the autocorrelation function Ryx(7) of a
stationary random process X (t) form a Fourier transform pairs:

Sx(f) = J_ Rx (D)e /#™*dr
Ry(7) = ffx,sx (fel™Tdf

Properties of the power spectral Density:

1. The zero frequency value of the power spectral density of a stationary
process equals the total area under the graph of the autocorrelation
function ;

a0

5,(0) = f "R, (D)dr

-0



. The mean squared value (the total signal power) of a stationary process
equals the area under the power spectral density curve.

0

E{X(6)2} = Ry(0) = f Se(f)df

. The power spectral density of a stationary process 1s always nonnegative ;
Le., Sx(f) =0 forall f.

. The power spectral density of a real-valued random process 1s an even
function of f.

Sx(f) = Sx(—f)



Find the power spectral density of the random process X(t) = A cos(2nf.t + 6);

: . A* A*
0 is a uniform r.v over (—m, ). ” )
4 Py
pis
For this process, we found earlier that Ry (1) = A? cos2mf.T
Since Sy (f) = F{ Ry(7) }, then —f- f-

Se(F) =2 (8(F = £) +6(F +£))

The total average power is obtained by integrating Sy (f) over all frequencies.

[ S (Pdf = [7 2 [8(f — )+ 8(F + f)ldf



Transmission of a Random Process Through a LTI Filter

Suppose that a stationary process X(t) 1s applied to a LTI filter of impulse
response h(t) producing a new process Y(t) at the filter output.

The mmput Signal X (t) is a stationary process characterized by an auto-
correlation function R, (7) and a power spectral density S, (f).



iviean vailue ol y(t)

Y (t) is related to X(t) through the convolution integral
Y () =" h (D)X(t —2)dA
The mean value of Y(t) is
E{Y ()} = [~ h (DE{X(t — A)}dA
Since X (t) is a stationary process, then E{X (t-A)} = ., a constant, so

E{Y ()} =[" h (D) pe dh=p " h(2)d2

by = [ h (A)dA = H(O)

where, H(0) is the value of the transfer function evaluated at f =0,

Autocorrelation Function of Y(t)

The autocorrelation function of Y(t) can be evaluated as:
Ry (t,u) = E{Y(t). Y(u)} ; u=t+T
=E{J7 h(A)X(t = 2)d Ay . [7 h(A)X (u — 2;)dA,
=_|‘f: h(A)h(A)E{X(t — 1) X(u — A,)}dA,dA,

= [J_h(A)h(A;) Ry [(t— &) — (u — A;] dAyA,



Ry [(t—24;) —(u—2,] =Ry [(t—2A —u+ 4] =Ry [(T— A — A;]

Where, T = t — u. With this, Ry (t, u) becomes

Re@ = [[ 1 OR (o) Re (1= + 1),

Which can be expressed in a compact form as:

Ry (1) =h (7)* h(-1)* R«(7)




Mean Square Value of Y(t)

Setting T = 0 1n the expressions for Rx (1), we get
E{Y(®} =R, (0)=[["_h (&)h (h) Ry (A-hy) di; di

Power Spectral density S, (f) of Y(t)

The power spectral density of Y(t) 1s related to the autocorrelation function
through the relations

SyH=F{R (1)} =F { h(7)* h(-1)* Ry(1) }
=H(f) . H () . S\(f)
Sy(f) = [~ [H(D)|?Sc(Ddf



Total Input and Output Power

The total input and output powers can be found as the total area
under the power spectral density curve.

E{X(t)’} = [ _S(Ddf =R, (0)

E{Y(t)’} = [~ S,(Hdf =R, (0)



The Gaussian Random Process

A random variable X 1s said to be Gaussian if its probability density
function 1s :

£(x) = 1 a—(x- 1x)? /20%

2ma’

where,

I.LK: E(x) is the mean value of X

sz = E{(X-p,)"} is the variance of X.



A random process X(t) 1s said to Gaussian 1f the random variables X,
X5,., X, (obtained by observing the process at times ty, t,,...., t, ) have a
jointly Gaussian probability density function for all possible values of n and

all times t, to,..... t,.

. . £(x)
Two Virtues of the Gaussian Process

First : The process has many properties

that make analytic results possible (easy
to handle mathematically).

Second: The random process produced

by physical phenomena is often such Hx

that a Gaussian model 1s appropriate . The use of a Gaussian model to
describe the physical phenomena 1s usually confirmed by experiments.



The Central Limit Theorem

Let X;,X5,.,X, be a set of independent and 1dentically distnibuted (11d)
random variables such that E(X;) = p, and Var (X)) = ﬂ'xz . Define the

random variable



XX
mn

The probability distribution of U approaches a Gaussian distribution with

. 2, . .
mean |, and variance g, /n in the limit as n = o .

The theorem provides a justification for using a Gaussian process as a model
for a large number of physical phenomena in which the observed random
variable at a particular instant of time, 1s a result of a large number of
individual events.



Properties of the Gaussian Process

1- If a Gaussian process X(t) 1s applied to a stable linear filter, then the
random process Y(t) at the output of the filter 1s also Gaussian .

To see that we consider the convolution itegral relating Y(t) to X(t)
Y(y=[" X(A)h (t— A)dA
Which comes from the approximation

Y()= LX(4)h (= 4;)



Note that Y(t) i1s a linear combination of Gaussian random variables, and so
Y(t) 1s Gaussian for any value of t (any linear operation on X(t) produces

another Gaussian process).

2- Consider the set of random variables X(t;), X(t;) ,...., X(t,), obtained by
observing a random process X(t) at times t;, t, ..., t,. If the process X(t) 1s
Gaussian , then this set of random variables 1s jointly Gaussian for any n.
The joint pdf 1s completely determined by specifying

the mean vector

T

=, Has o ]

and the covariance matrix



=1 = |.cij=E{(Xi-m)(Xj-p)},i,j=1,...,n

The joint pdf of the n random variables 1s

f(Xq,....%X,) ! a—0.5(X- DT Y1 (X - )

" 2m)™? Jdety

3- If a Gaussian process 1s stationary in the wide sense, then it is also

stationary in the strict sense (this follows from property 2 above ).

4- If the random variables X(t;), X(t;) ,...., X(t,) obtained by sampling a
Gaussian process X(t) at times t;, t,, ... , t, are uncorrelated, that is

E{CXi- 1i)( X5 - 15); = 0; 17




then these random variables are statistically independent. Here the
covariance matrix 1s diagonal.

The joint pdf becomes a product of the marginal pdf’s.

L a-(xi—wi)?*/20]

) =TT, F(x) = [1i=4

271‘5-12

A diagonal covariance matrix 1s a necessary and sufficient condition for
statistical independence .



Noise in Communication Systems

The term noise 1s used to designate unwanted signals that tend to disturb the
transmission and processing of signals in communication system and over
which we have no control .

The noise may be external (man-made noise, galactic noise ) or internal
(arising from spontaneous fluctuation of current or voltage n electronic
devices ), example of which are shot noise and thermal noise .



Shot Noise

The noise arises in electronic devices such as diodes, transistors and photo-

detector circuits, due to the discrete nature of current flow in these devices.
Remember that current 1s a result of the flow of electrons, which have a

discrete nature. The Poisson distribution 1s often used to model this type of
noise. Using this model the number of electrons emitted in an interval of

length T 1s a random variable with the pdf

T @AM

P(X=x)=¢€ x=0,1,2,...

A: average number of electrons emitted /unit time (rate of emission).



Thermal Noise :-

Voltages and currents that exist in a network due to the random motion of
electrons 1n conductors 1s referred to as thermal noise (Johnson’s noise).

Quantum mechanics shows that the power spectral density of the thermal
noise associated with a resistor with a resistance R 1s given by

S5,(f) = 77 V*/Hz

K: Boltsman constant ( 1.38 *10™ J/degree )

h : Planck constant (6.62 *107* Joules-sec)

T: degree in Kelvin



=> R :noiseless resistor
R

noisy resistor
Sv=2KTR

For frequencies up to 10'* =1000 GHz, this power spectral density is almost
constant having the value

S.(f)=2kTR V°/Hz.

The thermal noise voltage in a zero —mean Gaussian random process.



> (B
v 2kTR

>
f
T R(7)
>
0 T
E{V(t)}=0; Zero mean.
S,(f) = 2kTR; constant power spectral density.

The autocorrelation function corresponding to this constant power

spectral density is:
R\(7) =2KTR o(7);

This result shows that two random variables V,; , Vi taken at times t; and t>
are statistically independent for any value of T=t,-t; T>0.



White Noise

White noise 1s one whose power spectral density 1s constant over all
frequencies. The power spectral density and autocorrelation function for this
type of noise are:

No/2

SW(D — NHQ
R.(7) = No/2 &(7)

This 1s the type of noise (model) that we will use 1n the analysis of
communication systems.



The assumption made 1s that this noise 1s additive white Gaussian
(AWGN). If s(t) 1s the transmitted signal and r(t) 1s the received signal, then

r(t) =s(t) + w(t); additive channel noise .
Filtered White Noise

Assume that a white Gaussian noise w(t) of zero mean and psd = Ny/2 1s
applied to an 1deal LPF of B.W = B. Let n(t) denote the filtered noise, then

H(f) Sa(D)

w(t) J—l—l n(t)
} f

B f -B B

No/2




S.(H) = [H(D|" Sw(D)

Su(f)= [ND/Z “B</< B; Output psd
,0.W

R,(T) = J'E" Nu eU2mf1) 4f

R.(T) = NoB sinc 2Bt; Output autocorrelation function

E{n(t)} =0; ZE€TO0 mean noise

E{n(t)’} = ffﬂ S,(f)df = % (2B) = N¢B; Total output noise power

[he pdf of the filtered noise at any particular time t 1s

—1'12

fo(n) = _ e 2(NoB) -00 < n <00

J2n(N,B) :

Remark: note that the pdf is not a function of time indicating that this
iltered Gaussian process 1n stationary 1n the strict sense.




Correlation of White Noise with a Sinusoidal Signal

Let w(t) be a white Gaussian noise with zero mean. This noise 1s multiplied
by a sinusoidal basis function and integrated over an interval of duration T to

produce the scalar N. This scheme 1s repeatedly used 1n the coherent
demodulation of digital signals. The interval T corresponds to one symbol

interval and /. 1s the frequency of the carrier. The carrier period and the
symbol period are related by T=nT, where n 1s an integer. We wish to study
the properties of N.

(2/T)"0.5 cos 2mfct



Mathematically, the correlation process is represented as:

N=J'0Tw(t)\/§c052nfct dt

The mean value of N 1s:

E{N} = [ E{w(¢)} \E cos2nf.t dt=0.
The variance of N is:
5. 2 T
E{N"} =$ﬂn E{w(t,)w(t,)}cos2rf.t; cos2mf.t, dt, dt,

E{w(t))w(t2)} = Ry(t — t;) = No/2 6(t2 — t})

2 No

= E{N?} = = fDT(fUTES(tZ - t,) cos 2 mtf, t; dty) cos 2mf,t,dt,

2 No (T
=== 1 cos? 2nf,t, dt,; T=nT,

The last step comes by virtue of the sifting property of the delta function. By
performing the integration, we get



No
E{N}=—=¢"
2

: : : : No
=> N is a zero mean Gaussian r.v with variance o” = - Its pdf can be
written as

1 —n°
fiy(n) = e 2.(Ng/2)
No
JZ?I(:?)
_n2




Narrow-band Noise

Now let the white Gaussian noise w(t) of psd S, (f) = N,/ 2 be applied to an
ideal band pass filter with center frequency f. and bandwidth 2B.

Sn
? No/2

w(t)

fc+tw g fe+w 0 fc-B g fc+B

The noise 1s described as narrow band when 2B << f.. The analysis 1s similar
to that done for the LPF and the results are summarized as follows:



Su(H)=Ny/2 for f-B</fl<{.+B; Output psd

E{n(t)}=0; ZEro mean noise
N
E{n(t)"}=2 .?G.ZB =N,(2B) = o Total output power
1 -n"2
_ 2(2BN) €N < o :
() TZn BNy e o) | -o<n<ow; output noise pdt.

R,(0) = E{n(t)*} = _]"l S, ()df ; Mean square value.



Narrow-band Noise: In-phase and Quadrature Representation

Let w(t) be applied to a bandpass filter of B.w = 2B centered at f; to
produce a narrow band noise n(t).

The narrow band noise n(t) can be represented in terms of an in-phase ny(t)
and a quadrature component ng(t) as:

w(t) n(t)

S (f) = No/f2

fc-B fc fc+B

n(t) = ny(t) cos 2 T f.t — np(t) sin 2 .t



The in-phase and quadrature components ny(t) and ng(t) can be recovered
from n(t) as demonstrated in the block diagram.

2cos 2mrfct

-2sin 2mrfct

ni(t) = Lp{2n(t)cos 2mf.t}; in-phase noise component
Sni(f) = Lp {S.(f-f)+S,(f+f£.)}; in-phase noise psd.

no(t) = - Lp{2n(t)sin2mi.t}; quadrature noise component



Sni(f) = Sno(f);  both components have the same psd

Finally, ni(t) and nq(t) can be retrieved from n(t) as:
n;(t) = n(t) cos 2nf.t + n(t)sin2nf.t
n;(t) = n(t) cos 2nf.t — n(t)sin2nf t

Properties of the Noise Components

e The in-phase component ny(t) and the quadrature component ng(t) of
narrow band noise n(t) have zero mean .

e If the narrow band noise n(t) is Gaussian, then ny(t) and ng(t) are
jointly Gaussian .

e If n(t) is wide sense stationary, then n;(t) and n(t) are jointly wide
sense stationary .

e Both n,(t) and ng(t) have the same power spectral density

Sni(f) = sﬂq(f)={ SN(I;}— f.) + Sn(f + f.),—B {-::i <B

e 1ny(t), ng(t) and n(t) have the same variance

E{n(t)’} = E{ni(t)’} = E{ng(t)’} = 0"



¢ The cross-spectral densities of ny(t) and ng(t) are imaginary

Snmvo(f) = - Snoni(h) Z{ iLSn(t [_)I_ fo) — Sn(f —£)], _Ba_i,f < B

e [fn(t)1s Gaussian with zero mean and a power spectral density S, (f)
that 1s symmetric about f., then ny(t) and ng(t) are statistically

independent. The joint pdf of ny(t) and ng(t) is the product of the
marginal pdf’s



¢ The cross-spectral densities of ny(t) and ng(t) are imaginary

Snmvg(f) = - Snoni(h) Z{ il Sn(t S_ fo) — Sn(f —£)], —Bﬂ.irf < B

e [fn(t)1s Gaussian with zero mean and a power spectral density S,(f)
that 1s symmetric about f., then ny(t) and ng(t) are statistically
independent. The joint pdf of ny(t) and ng(t) 1s the product of the
marginal pdf’s

., %

(n;,nq) mEZG‘E ) mezaz

(1.e, when the cross spectral density = 0 V f, then n; and ng are independent)

— 1




Polar Representation of Narrow-band Noise

Let n(t) be a narrow band zero-mean, white Gaussian noise with a symmetric
psd about some center frequency f .

n(t) = ny(t) cos 2mt, t — np(t) sin 27t t.

Because S,(f) 1s symmetric, it follows that ni(t) and ng(t) , observed at a
fixed time t, are independent Gaussian r.v with zero mean and variance a .

n(t) can also be represented as
n(t) = R(t) cos ( 2mf.t + B(t) )

where the envelope R(t) and the phase @(t) are given as:
R(t) = [n(t)” + ng(t)" 1"

B(t) =tan " (ng(t) / ny(t))



[t can be shown (Go back to your ENEE 331 lecture notes and go over the
proof) that R and @ are independent random variables with pdf ’s

1
fm((l)}—{ om 0 S0 <27 Uniform pdf)
0 ,0. W
r 2 2
L exp[— (r? /2 >0
fR(r)—[nﬂ expl= (" /200, 120 pavieigh distribution)
0 ,0.W
No/2 (0 No/2
|
|
l
Cmmmmm > 0 PN f
2B 2B

If S,(f) has the psd shown then , ° =2 (Ny/2)(2B) = 2N, B and the pdf of R
is as given above .



NOISE IN ANALOG
COMMUNICATIONS



" Lessons to learn about Noise:

Lesson 1: Minimizing the effects of noise is a prime concern in analog communications,
and consequently the ratio of signal power to noise power is an important metric for
assessing analog communication quality.

Lesson 2: Amplitude modulation may be detected either coherently requiring the use of
a synchronized oscillator or non-coherently by means of a simple envelope detector.
However, there is a performance penalty to be paid for non-coherent detection.

Lesson 3: Frequency modulation is nonlinear and the output noise spectrum is parabolic
when the input noise spectrum is flat. Frequency modulation has the advantage that it
allows us to trade bandwidth for improved performance.

Lesson 4: Pre- and de-emphasis filtering is a method of reducing the output noise of an
FM demodulator without distorting the signal. This technique may be used to significantly
improve the performance of frequency modulation systems.



Properties of Noise

« The mean of the random process. For noise, the mean value corresponds to the dc offset. In
most communication systems, dc offsets are removed by design since they
require power and carry little information. Consequently, both noise and signal are
generally assumed to have zero mean.

.* The autocorrelation of the random process. _ Np _
Ru'(f) - Tb(f)

» The spectrum of the random process. For additive
white Gaussian noise the spectrum is flat and defined
as

. Np
“Sl'l'(f) = 2

« The noise power at the output of a filter of equivalent-noise bandwidth is:

N = NoBr



lock diagram of signal plus noise before and after filtering showing spectra at each point.
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Noise in Communication Systems

-Given that communication deals with random signals,

how do we quantify the performance of a particular communication system?

we will focus on signal-to-noise ratio (SNR) as the measure of quality for
analog systems;

-For zero-mean processes, a simple measure of the signal quality is the ratio of
the variances of the desired and undesired signals.

E[s*(1)]

" E[2(1)]

-The signal-to-noise ratio is often considered to be a ratio of the average signal power
to the average noise power



Example: Sinusoidal Signal-to-Noise Ratio

Consider the case where the transmitted signal is s(r) = A, cos(2mfx + 0)

where the phase is unknown at the receiver. The signal is received in the presence of
additive AWGN noise, determine SNR?

2 1 r 2
E[s°(t)] = —f (A, cos(2mfa + @) dt
=0 E[n(t)] = N

2 LT
- ;{_T,fg (1 + cos(4=ft + 28)) dt = NyBrt
A sin(4arft + 26) |T
- ﬁ r+ Arf. : 2
: A
- % SNR =

2Ny Bt



The signal-to-noise ratio is measured at the receiver, but there are several

points in the receiver where the measurement may be carried out. In fact, measurements at particul:
points in the receiver have their own particular importance and value.

For instance:

pre-detection signal-to-noise ratio: If the signal-to-noise ratio is measured at the front-end of the receive
then it is usually a measure of the quality of the transmission link and the receiver front-end.

post-detection signal-to-noise ratio: If the signal-to-noise ratio is measured at the output of the receiver
a measure of

the quality of the recovered information-bearing signal whether it be audio, video, or

otherwise.
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nce transmission model for analog communications

Message signal Low-pass filter with
with the same power = ¥ » bandwith equal to the — Output
as the modulated wave + T + message bandwidth
Channel
noise

average power of the modulated message signal
SNE—mf =

post—detection SNR
reference SNR

average power of noise measured in the message bandwidth

Figure of ment =

» The pre-detection SNR is measured betore the signal 1s demodulated.
» The pm;t-detr:ttiun SNR 1s measured after the Eignﬂ] 15 demodulated.
» The reference SNR 1s defined on the basis of a baseband transmission maodel.

» The figure of merit is a dimensionless metric for comparing diftferent analog
modulation—demodulation schemes and is defined as the ratio of the post-detection
and reference SNRs.

N N



Bandpass Receiver Structure:
Block diagram of band-pass transmission showing a superheterodyne receiver
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Noise in Linear Receivers Using Coherent Detection

Double sideband suppressed-carrier (DSB-SC) modulation, the modulated signal is
represented as

s(t) = Aam(t) cos(2wft + 8)

x(t) = s(z) + n(t)
Snif)

—| Brle— Nyi2 —-| By |-—
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signal ¢ | L F. filter 2 filer ":f;ﬁf -+ f.
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~ ~ band-pass noise
Local cos(27f.1)
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Pre-peTection SNR for DSBSC

E[s2(2)] = E[(A, cos(2af,¢ + 0))"JE[m*(¢)]

If we let

P = E[m*(1)]




POST-DETECTION SNR for DSBSC

x(t) = s(t) + my(t) cos(2wf.t) — ng(t) sm(2wf.t)

+3(Am(t) + ny(2)) cos(4mft) — 3no(t) sin(4wf.t)

y(f) = H(Aam(t) + m(£)) o S(ADP
SNR st = 7
3 (2N W)
W 2
2 AP
E )| = d — <
[n1(2)] _WMJ f INW
= IN, W
T — ACT SNR st
SNRIEf — AEP/(ZN[}W Figure of mernit = - 1

SNR (o



Noise In AM Receivers Using
Envelope Detection

Scaled version

Band-pass x(1}) ' Enpvelope ) | of the message

RF signal ——— ){ r_—:-— filter > detector : T signal mi(f)
frr € dc plus noise
blocking
. capacitor
Local
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s(t) = A1 + kym(t)) cos(2wf.t)



PRE-DETECTION SNR

E[(1 + k,m(1))?] = E[1 + 2k m(t) + k2m(1)]
=1+ 2k E[m(t)] + ESE[m"(1)]
=1+ k2P

AZ(1 + kgP)

SNRAMM —
. 2Ny B




PosST-DETECTION SNR

x(t) = s(t) + n(z)
= [Ac + Ackgm(t) + ny(t)] cos(2mf.t) = np(t) sin(2wf1)

y(t) = envelope of x(t)

= {[AL1 + kam(t)) + m(0)]" + mgy(1)}'/

Ve) ~ Ao+ Adl) + m(o) //T'
> >

under high SNR conditions Ac+ A k() (0
- Conditions:
aw _ AckP -The SNRis high.
SNRT;'M = IN, W -kais adjusted for 100% modulation or less, so there is no

distortion of the signal envelope.



Figure of Merit
SNRis AZ(1 + k2P)/(2NoW)

SNRpo: kP

post

SNRref 1 + k2P

Figure of merit =

The figure of merit for this system is always less than 0.5. Hence, the noise performance of an
envelope-detector receiver is always inferior to a DSB-SC receiver, the reason

is that at least half of the power is wasted transmitting the carrier as a component of the
modulated (transmitted) signal



Noise in SSB
Do It...

s(t) = %m{r] cos(2wf.t) + %ﬁ:(r} sin(2f.t)

the reference SNR 1s AjP,f{4NUW

. AP
SNRyY = ——
e 4NW

_ . SNRY
Figure of merit =
SNR ..

y(t) = %(%?HU} + m(t})

; AZP
SNR: = ——
POst 4N, W



Summery:

Comparing the results for the different amplitude modulation schemes, we find that

there are a number of design tradeoffs. Double-sideband suppressed carrier modulation

provides the same SNR performance as the baseband reference model but requires synchronization
circuitry to perform coherent detection. Non-suppressed-carrier AM simplifies the receiver design
significantly as it is implemented with an envelope detector.

However, non-suppressed-carrier AM requires significantly more transmitter power to obtain the

same SNR performance as the baseband reference model. Single-sideband modulation

achieves the same SNR performance as the baseband reference model but only requires

half the transmission bandwidth of the DSC-SC system. On the other hand, SSB requires

more transmitter processing. 7hese observations are our first indication that communication system desigr.
involves a tradeoff between power, banadwidth, and processing complexity.

\



AIVW JHOSLNAA NH3IZ

14y \?i&«&\\“&‘\“\\\“& I
7,

0o

oo oo

ulli

i
=

(Selite véoW{

Deutsche Bundesbank
Frankfurt am Main
1. September 1999

GN4480100S8



GN7514664N1

ZEHN DEUTSCHE MARK

AYVYN IHOSLNIA NHIZ

t‘ o - ‘ Iy 5
X | E;gﬁ
....‘3&.. o -d:‘;.-;__-"‘.

)
y
WilTHhe \\\_ -

e —

B Ed S Mt N | e B




Detection of Frequency Modulation (FM)

' S(f)
s(t} = A, cns[lwﬂt + E’.rrkllrf ml:-r) df}
]
2 0
. A f
SNRIM — =
P T IN,Br
Jr.f
BM oy e, Bandpass MO L Discriminator — o Low-pass
signal s(r) filter filter

T ch

Noise ~
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Post Detection SNR

x(t) = s(t) + n(t)

n(t) = ny(t) cos(2wft) = ng(t) sin(2wft)

n(t) = r(t) cos[2mft + b,(1)]

r(t) = [np(t) + ng(6)]"?

b(t) = hkff m(7) dr x(t) = s(t) + n(z)
0 = A, cos[2aft + ()] + r(t) cos[2mft + ¢,(2)]
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1) \ tir)

a(tr) = Z*:T.Efjl; m(7) dr +

no(1)
A,

} Un(t) = dult) — (1)

r(t}
A

C

B(t) = ¢(z) + ——sin[dn(t)]

tan™! £ = Esince £ =< 1

no(t)
Ac

ng(t) = r(t) sin[¢,(1)]

0(t) = &(r) +
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v(t) = 2 dc:}l
= J&I,n'm(.!;l + n4(t)

||
d
nalt) = E;ﬂf Hi{r}
[ |
paff

G = 3ma =%

Nof” Bt
{ L <

0, otherwise

Nof’
Sn,(f) { > Ifl<W

0, otherwise

Ny [V
Average post-detection noise power = — f f*df
A J-w

L INWP

3A;

22
—— 3AZkFP
IJ-I!HT _:II'
2N, W

S ﬂ[f )

Ny
— f
_Br 0 Br
2 {a)
Sy, )
B 0 By
z (b) 2
:;_n._;ml:Jf )
-W 0 W f

{€)



Figure of Merit

thlg FM modulation, the modulated signal power is simply AEI,F?_, hence the reference SNR
is A_/(2NyW). Consequently, the figure of merit for this system is given by

2
3ALkFP _ (&P
SNREM, 2 wA W
Figure of merit = SNR_, = Af — 32
IN, W

where, we have introduced the definition D as thﬁ deviation ratip . Recall from generalized Carson rule
yields the transmission bandwidth Bt = 2(k"" + W) = 2k for an FM signal. So, substituting
B/2 for .E:I,rP” * for in the definition of D, the figure of merit for an FM system is approximately given by

3By

| 2
Fi f merit = —| —
igure of meri 4( W)



FM Pre-emphasis and De-emphasis

1

p o Pre-emphasis Fid * De hasi M )
) filter, H CF) | transmitter receiver | o] 1fi|-t-:-':nfljrd:{i"? = p[uE:;aa%:e;
%+ .
MNoise 1
wix)
» Haelf) =
Spa L) o I+ j—
M fi:l]f-
W 0 W 7 -w W f f
n.-{l{} =1+ f
T =1
: Nl b, 1=
| Ha ()] SpAf) = el 7 - Average output noise power without pre-emphasis and de-emphasis
0, DthEIWlSE average output noise power with pre-emphasis and de-emphasis
s
Average output noise N _ 2W°
( B e ) ;'j P2 Helf)|* df I =
power with de-emphasis Az

3 [ pima 2 dr
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[n commercial FM broadcasting, we typically have {548 = 2.1 kHz, and we may reasonably
assume W = 15 kHz. This set of values yields I = 22, which corresponds to an improvement
of 13 dB in the post-detection signal-to-noise ratio of the receiver. This example illustrates that
a significant improvement in the noise performance of an FM system may be achieved by using
pre-emphasis and de-emphasis filters made up of simple RC circuits.






